一.定義
1.全等形:形狀大小相同,能完全重合的兩個圖形.
2.全等三角形:能夠完全重合的兩個三角形.
二.重點
1.平移,翻折,旋轉(zhuǎn)前后的圖形全等.
2.全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等,全等三角形的對應(yīng)角相等.
3.全等三角形的判定:
SSS三邊對應(yīng)相等的兩個三角形全等[邊邊邊]
SAS兩邊和它們的夾角對應(yīng)相等的兩個三角形全等[邊角邊]
ASA兩角和它們的夾邊對應(yīng)相等的兩個三角形全等[角邊角]
AAS兩個角和其中一個角的對邊開業(yè)相等的兩個三角形全等[邊角邊]
HL斜邊和一條直角邊對應(yīng)相等的兩個三角形全等[斜邊,直角邊]
4.角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等.
5.角平分線的判定:角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上.